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Abstract: In this work it is pointed out that the phase transitions of the d+ 1 Gross-Neveu (fermionic) and CPN−1 (bosonic)
models at finite temperature and imaginary chemical potential can be mapped to transformations of Hubbard-like regular
hexagonal to square lattice with the intermediate steps to be specific surfaces (irregular hexagonal kind) with an ordered
construction based on the even indexed Bloch-Wigner-Ramakrishnan polylogarithm function. The zeros and extrema of the
Clausen Cld(θ) function play an important role to the analysis since they allow us not only to study the fermionic and bosonic
theories and their phase transitions but also the possibility to explore the existence of conductors arising from the
correspondence between the partition functions of the two models and the Bloch and Wannier functions that play a crucial role
in the tight-binding approximation in solid state physics. The main aim of this work is not only to unveil the relevance of the
canonical partition functions of a fermionic and a bosonic model to Bloch states by using an imaginary chemical potential but
also to examine the overlap between two Bloch wave-functions that differ by a lattice momentum that calculates the momentum
transfer of a Bloch wave during the interaction with a lattice point of a hexagonal construction.
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1. Introduction
In the realm of condensed matter physics the Hubbard

model stands as a cornerstone in the study of electronic
correlations within quantum materials [1, 2]. It describes
electrons in a solid that interact with each other through short-
range repulsive interactions. Specifically, the Hubbard model
introduces a contact interaction between particles of opposite
spin on each site of a lattice. When applied to electron systems,
these interactions are typically expected to be repulsive, arising
from the screened Coulomb interaction. In this work, there is
a strong belief that if one examines in detail the setup of the
higher dimensional thermal windows for fermions and bosons
at imaginary chemical potential, he may connect them to the
transformation of Hubbard-like lattices to square lattice and
the appearance of insulator’s identities. An Appendix contains
some technical details and useful formulae for the Bloch-
Wigner function.

2. The Hubbard Model and the
Fermionic and Bosonic Charges at
Imaginary Chemical Potential

In the absence of a chemical potential, the fermionic Gross-
Neveu and bosonic CPN−1 models exhibit distinct symmetry-
breaking patterns at finite temperature T . The Gross-Neveu
model displays a parity-broken phase at low temperatures,
which vanishes beyond a critical temperature. Conversely,
the CPN−1 model follows the usual continuous symmetry-
breaking pattern at zero temperature, but this broken phase
ceases to exist for T > 0. Instead, when the coupling
reaches its critical value at T = 0, a finite-temperature
scaling regime emerges, characterized by a non-zero thermal
mass for the scalars. From a previous work, detailed in [3],
reveals that introducing an imaginary chemical potential alters
this situation. The phase structures of both models can be
mapped onto each other. Additionally, we have explored
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the significance of the celebrated Bloch-Wigner function on
the unit circle, leveraging it in our calculations of phase
transition-thermal windows [4]. In a pursuit to illuminate
bosonization physics, we have delved into the fermion-
boson map in higher dimensions, comparing our continuum
models‘ phase transformations with those of specific Hubbard-
like lattices. By utilizing the zeros and maximizations of
Bloch-Wigner functions introduced by Zagier [3–6], we have
uncovered an alternative perspective that draws parallels to
the emergence of conductors. We consider that the charge
arising as the eigenvalue of the charge N -normalized fermion
number density operator can separate the insulating from the
conducting state of a Hubbard-like model of fermions [7].
These investigations extend across arbitrary odd dimensions.

2.1. The Hubbard Model at Imaginary Chemical Potential

The Hubbard model is an approximate model that offers
an insight view into how interacted electrons give as a result
insulating or conducting phenomena in a crystal. Let’s see the
Hubbard Hamiltonian.

H = −t
∑
[i,j]s

c†iscjs +U
∑
i

niunid − iµ
∑
i

(niu + nid) (1)

where the notations iu and id imply spin up and spin down
respectively, n is the number operator and c†, c are the creation
and destruction operators that create an electron in a state ΦR

and destroy an electron in a state ΦR, where ΦR is the Wannier
function. Wannier functions are orthogonal functions, used in
solid state physics, that refer to localized molecular orbitals
with periodic boundary conditions. Since they are orthogonal∫

crystal

Φ(x)∗1Φ(x)2dx = 0 (2)

or
e
∫
crystal

Φ(x)∗1Φ2(x)dx = 1 (3)

The first term is the kinetic term which shows how electrons
move from one site to a neighbour site of the lattice. The
second term adds an energy U if the site already has two
electrons. At last there is the imaginary chemical potential
term. So, what does the chemical potential actually do? Firstly,
we use the imaginary chemical potential to avoid the sign
problem that arises in Monte Carlo simulations (configurations
in the partition function that may be negative or complex).
Mainly, the imaginary chemical potential places the fermions
and bosons in such positions, creating a complex structure
of hexagonal lattices, sometimes creating an accumulation of
charge and sometimes its nullification [8]. So we have an
image of a conductor for the first case and an insulator for the
second case.

2.2. The Charge Qdf of Fermions

The GN model in d Euclidean dimensions is described by
the action [4].

S1f = −
∫ 1

T

0

dx0

∫
dd−1x̄

[
ψ̄a(/∂ − iγ0α)ψa +

Gd
2(TrId−1)N

(
ψ̄aψa

)2
+ iαNQdf

]
, (4)

with Qdf the N -normalized d-dimensional fermionic number
density and a = 1, 2, ..N . For odd d we take the dimension
of the gamma matrices to be TrId−1 = 2

d−1
2 . We see that the

model also has 3 terms. The first one is the kinetic term, the

second is the interaction term that contributes to the energy of
the fermions and the the third one is the imaginary chemical
potential term with Q the number eigenvalue of the fermion
number operator. The canonical partition function for an
auxiliary scalar field σ is expressed as follows:

Z1f (
1

T
,Qdf ) =

∫
(Dα)(Dσ)e−NS1f,eff , (5)

S1f,eff = iQdf

∫ 1
T

0

dx0

∫
dd−1x̄ α− TrId

2Gd

∫ 1
T

0

dx0

∫
dd−1x̄ σ2 + Tr ln (/∂ − iγ0α+ σ) 1

T
. (6)

where σ plays the role of the mass of the fermion condensate.
The d-dimensional charge gap equation becomes:

iQdf = lim
ε→0

TrId−1T

∫ Λ dd−1p̄

(2π)d−1

∞∑
n=−∞

eiωnε(ωn − α∗)
p̄2 + (ωn − α∗)2 + σ2

∗
, . (7)

We will discuss below in some detail the cases d = 5 and d = 7 in order to exhibit some of the general features of the higher
dimensional models. Starting with d = 5 and using the results of [3, 4], we have the form of the charge gap equation as

π2Q5f

T 4
− 3i

[
D4(−z∗) +

1

6
ln2|z∗|D2(−z∗)

]
= 0 (8)
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where z∗ = e−
σ∗
T −

iα∗
T . When an imaginary chemical

potential is present the situation becomes more intriguing.
We encounter nontrivial zeros of D3(−z∗) on the unit circle.
A brief exploration in Mathematica revealed two zeroes for
D3(−z) on the unit circle. Remarkably their positions were
approximated to high accuracy by rational multiples of π as

D3(−e
−iα∗
T ) = Cl3(

α∗
T
± π) = 0⇒

α∗
T
≈ 7π

13
or
α∗
T

=
19π

13
(mod 2π) . (9)

When we use the periodic properties of Clausen functions,
we encounter the following relevant results:

Cl3

(
6π

13

)
= Cl3

(
20π

13

)
= 0.000362159 . (10)

and

Q5f,extr = ±i3T
4

π2
Cl4

(
6π

13

)
(11)

since Cl4(±6π/13) ≈ ±0.995777 are the maximum
(minimum) values of D4(−z) on the unit circle. We saw
that this pattern generalizes to all dimensions. Finally, when
α∗
T = π the gap equation coincides - apart the overall σ∗

factor - with the corresponding one of the CPN−1 that will
be given below. The charge is Q5f = 0 and the system has
been bosonized (insulator mode) [9].

The seven-dimensional case shows how our results are
generalized to higher dimensions. The gap equation is

4π3

3T 6
Q7f + 15i

[
D6(−z∗) +

1

10
ln2|z∗|D4(−z∗) +

1

120
ln4|z∗|D2(−z∗)

]
= 0 (12)

Moving on the non zero chemical potential we can look for zeros of the critical gap equation on the unit circle. Again, their
positions are remarkably well approximated, better than in d = 5, by rational multiples of π as

D5(e
−iα∗
T ) = Cl5(

α∗
T
± π) = 0⇒

α∗
T
≈ 26π

51
or

76π

51
(mod 2π) . (13)

The relevant result is

Cl5

(
25π

51

)
= Cl5

(
77π

51

)
= 0.000129657 . (14)

and we found at these points that

Q7f,extr = ∓i45T 6

4π3
Cl6

(
25π

51

)
(15)

since Cl6(±25π/51) ≈ ±0.999151 are the maximum (minimum) values of D6(−z) on the unit circle.

2.3. The Charge Qdb of Bosons

The action of the bosonic theory for general d is from [4]

S2b =

∫ 1
T

0

dx0

∫
dd−1x

[
|(∂0 − iα)φa|2 + |∂iφ|2 + iλ(φ̄aφa − N

gd
) + iNQdbα

]
, a = 1, 2, .., N , (16)

where the auxiliary scalar field λ enforces the constraint |φ|2 =
N/gd and Qdb is the eigenvalue density of the N -normalized

U(1) charge density operator Q̂db = −igφ̄a
↔
∂ 0φ

a/N . In the
given model, we have both a global SU(N) symmetry and

a global U(1) symmetry. The latter can be easily gauged
by introducing a non-propagating abelian gauge field. Upon
integrating out the scalar fields, we arrive at the canonical
partition function as

Z2b(
1

T
,Qdb) =

∫
(Dα)(Dλ)e−NS2b,eff , (17)

S2b,eff = iQdb

∫ 1
T

0

dx0

∫
dd−1x̄ α+ i

1

gd

∫ 1
T

0

dx0

∫
dd−1x̄ λ− Tr ln

(
−(∂0 − iα)2 − ∂2 + iλ

)
1
T

. (18)

The d-dimensional charge gap equation is
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iQdb = − lim
ε→0

2T

∫
dd−1p̄

(2π)d−1

∞∑
−∞

eiωnε(ωn − α∗)
p̄2 + (ωn − α∗)2 +m2

∗
(19)

where the bosonic frequencies are ωn = 2πnT and we have
set iλ∗ ≡ m2

∗ in order to facilitate the comparison with
the fermionic gap equation (7) as σ∗ and m∗ have the same
dimensions.

The edges of the bosonic thermal windows represents a
switch in the statistics where the bosonic becomes fermionic.
These are given by roots on the unit circle ofDd−2(z∗) and we
find for example for d = 5 and d = 7.

D3(e−i
α∗
T ) = Cl3(

α∗
T

) = 0 ⇒ α∗
T

=
6π

13
or
α∗
T

=
20π

13
, (mod 2π) . (20)

At the edges of the bosonic thermal windows, the charge
becomes extremized. Specifically, it is given by the following
expression:

Q5b,extr = ∓3iT 4

4π2
Cl4

(
6π

13

)
=
Q5f,extr

4
(21)

for α∗
T = 6π/3 and 20π/13 respectively or

Q7b,extr = ∓45iT 6

32π3
Cl6

(
25π

51

)
=
Q7f,extr

8
(22)

for α∗
T = 25π/51 and 77π/51.

So if one wants to use a fermionic-bosonic model with equal
charges then he has to consider for every boson with chargeQb
a fermion with charge Qf = 2

d−1
2 Qb, or for every fermion a

number of d−1
2 bosons, where d = 3, 5, 7, ....

3. Large N Fermions and Bosons on the
Lattice

Consider a system in three dimensions and at finite
temperature T with a global U(1) charge operator Q̂. Its
canonical partition function can be formally calculated as the
thermal average over states with fixed Q̂ as

Zc(
1

T
,B) = Tr

[
δ(Q̂−B)e−

Ĥ
T

]
(23)

If the eigenvalues B of Q̂ are integers, namely if the system
contains elementary excitations, an explicit representation of
(23) can be written as

Zc(
1

T
,B) =

∫ 2π

0

dθ

2π
eiθB Tr

[
e

Ĥ
T−iθQ̂

]
=

∫ 2π

0

dθ

2π
eiθB Zgc(

1

T
, iµ = iθT), (24)

whereZgc(T, iµ) is the grand canonical partition function with
imaginary chemical potential iµ [10–13].

In the simple systems we are interested in one expects that

Zgc(
1

T
, i(µ+ 2πkT )) = Zgc(

1

T
, iµ) , k ∈ Z (25)

One then notices with Bloch’s theorem as follows [14]. In
quantum system, taken here to be 1d for clarity, in a periodic
potential with period a the energy eigenstates are the Bloch
waves

ψk(x) = eikxu(x) , u(x+ a) = u(x) (26)

where k is the lattice momentum vector [15]. The transition
amplitude between two Bloch waves with different lattice
momenta is

〈ψk1 |ψk2〉 =

∫ a

0

dxei(k2−k1)x|u(x)|2 (27)

In spherical coordinates we may write

〈ψk1 |ψk2〉 =
1

2π

∫ 2π

0

dθei(k2−k1)θ|u(θ)|2 (28)

Notice that B may be thought of as a charge transfer
’momentum’. According to the theoretical background of the
Hubbard model, this charge transfer ’momentum’ is a potential
term that allows the fermions to travel on lattice sites. This is
like a term that describes the transition between conducting
and insulating systems. When B is 0 the Hubbard-like lattice
is an insulator and when B is max the lattice is a conductor.

A suitable expression of a 1d Bloch-wave is of the form:

ψk(θ) = eikθu(θ) (29)

where u function has the periodicity of the lattice 2π since
u(θ) = u(θ + 2π), like Zgc(β, iµ = iθT ) has the periodicity
of the chemical potential. The fermionic states in a Hubbard
model is described by the Wannier functions that defined by

ΦX(x) =
1√
N

∑
k

e−ikXψk(x) (30)

where X is a Bravais lattice vector in cartesian coordinates for
a 1d quantum system [16–19]. According to the replacement
rule the sum can be written as an integral, sinceN is very large,
like
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∑
k

=
N

V

∫
BZ

dk (31)

where V is the volume of the BZ Brillouin zone.
Interestingly the Bloch functions can be written in terms of

Wannier functions like

ψk(x) =
1√
N

∑
X

eikXΦX(x) (32)

So, in spherical coordinates the ψ Bloch function may be
written as

ψk(θ) =
1

2π

∫ 2π

0

dθeikΘΦΘ(θ) (33)

where Θ is a Bravais lattice vector in spherical coordinates.
So the picture is that the canonical partition function of
the Gross Neveu model is like a Bloch state that varies
continuously with k (or B) and the grand canonical partition
function is like a Wannier state at imaginary chemical potential
iΘ. The grand canonical partition function is a localized
system with periodic boundary conditions arising from the
imaginary chemical potential. This periodicity is an interesting
quasi-periodicity since we have the appearance of the Bloch-
Wigner-Ramakrishnan polylogarithm function Dm(z). It
is interesting that this function exhibits a very interesting

behaviour regarding periodicity. For m = even, the function
is not periodic since its sum involves alternating terms, and
the series does not repeat in a regular pattern. For m =
odd, the function has a more intricate structure. While the
individual terms in the series are not periodic, the presence of
the logarithmic term logm |x| introduces a quasi-periodicity.
Specifically the function satisfies the functional

Dm(1/x) = (−1)m−1Dm(x) (34)

Then we have two parts in partition function Zc. The charge
part with even index ofDm(z) function and the Tr log and the
grand canonical part with odd index of Dm(z). The first part
has no periodicity but the second part has a quasi-periodicity
of the hypothetical quasi-crystal of the band theory. When we
take the points ofDm(z) on the unit circle we have the Clausen
function which is periodic with period 2π and the matching
between Wannier function and the grand canonical partition
function is obvious. The grand canonical parts of Z1f and Z2b

are an orthogonal set of Wannier functions where∫ 2π

0

Z1fgcZ2bgc = 0 (35)

So the transition amplitude on the unit circle between the
two Bloch states of the Gross-Neveu and CPN−1 models is
from [4]:

Zdfb(
α∗
T

)
∣∣∣
σ∗=0
≡
[
Z

(d)
1f (

α∗
T

+ π)Z
(d)
2b (

α∗
T

)
] ∣∣∣
σ∗=0

= e
4πN

Vd−1

SdT
1−dCld−1(α∗

T )
(36)

The advantage here is that the divergent terms from
the bosonic partition function’s exponential come with the
opposite sign compared to the fermionic partition function so
their contribution is zero. At zero temperature T → 0 the ratio
Vd−1/SdT

1−d → 1 (i.e. we can think of Vd−1 as the surface
of a very large sphere). Then the Clausen’s functions with even
index at d→∞ limits are sin(α∗

T ). Therefore we write

lim
d→∞

Zdfb(
α∗
T

)
∣∣∣
σ∗=0

= e4πN sin(α∗
T ) . (37)

Figure 1. Fermions and bosons on Euclidean surface. The Euclidean surface is covered
by regular hexagons which become from the fermionic and bosonic thermal windows.

Suppose that we have a large number of N fermions (blue)
and N bosons (red) on Euclidean space, where the charge of
every fermion is 2

d−1
2 times the bosonic charge (Figure 1).

Here d plays the role of the order of the family of lattices
covering the Euclidean space. We also suppose that the large
Euclidean surface is covered by regular hexagons with the help
of the imaginary chemical potential mentioned before and let
us assume that the fermions and bosons are on the vertices of
these lattices.

Let’s see for example the case of the regular hexagon and
its ”perturbed” relatives of the hexagons conjecture. Based
on the hypothesis we had previously, we can, in line with the
generalization of the thermodynamic study of Gross-Neveu
and CPN−1 theories, give a more general hypothesis on the
observation that the inner angles of a regular hexagon are
exactly 2π/3 and there is a lattice point at 2π/3 on the unit
circle so the maximization of Clausen function which is equal
to the imaginary part of Lid(−z), where d = 2, 4, 6, ..., on the
unit circle for specific angles 7π/13,26π/51,103π/205 and
so on. These values come from an analytic formula for the
approximate positions of the zeros of allD2n−1(z), n = 1, 2, ..
functions on the unit circle. We obtain:

D2n−1(e−i
α∗
T ) ≡ Cl2n−1(

α∗
T

) = 0⇔ α∗
T
≈ θn, 2π − θn (mod 2π) (38)
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where

θn =
π

2

(
1− 5

4n+1 − (−1)n+1

)
(39)

for n = 1, 2, 3, ... There is an interesting approximation of
these zeros in [20].

The particles are the lattice points on Euclidean space of

irregular hexagons. At a large d limit the conjecture ends
up to the square lattice construction. Somehow as dimension
increases the 6th and 5th sides disappear and the particles are
getting closer to make some pairs. We may say that these
pairs are similar to Cooper pairs. The conjecture turns to be
as follows:

Table 1. Positions of the lattice points on the unit circle for hexagonal model.

Order d Lattice point 1 Lattice point 2 Lattice point 3 Lattice point 4 Lattice point 5 Lattice point 6

3 π/3 2π/3 π 4π/3 5π/3 2π

5 6π/13 7π/13 π 19π/26 20π/26 2π

7 25π/51 26π/51 π 76π/51 77π/51 2π

9 102π/205 103π/205 π 307π/205 308π/205 2π

... ... ... ... ... ... ...

∞ π/2 π/2 π 3π/2 3π/2 2π

One may see the transformation of a hexagonal Hubbard
lattice to a square one and compare with the phase transitions
of the Gross-Neveu model and CPN−1 model at imaginary
chemical potential. The picture is like the one that follows:

”Studying the correspondence of thermal windows with
the transformation of a hexagonal Hubbard lattice to square
lattice we have fermions at high temperature (edges of a
fermionic thermal window) and bosons at the beginning of
their fermionization area (edges of a bosonic thermal window).
The thermal windows close for both of them and we have
fermions with the same charge that getting closer to each other,
with a strong interaction (clockwise for fermions to π/2 and
anti-clockwise for fermions to 3π/2, anti-clockwise for bosons
to π/2 and clockwise for bosons to 3π/2). The picture is like
the Hubbard model of electrons in a periodic potential which
predicts the theory of conductivity. Fermions from hexagons
(order 3 lattice) are on lattice points 2π/3, 4π/3 and 0 and the
fermionized bosons are on π/3, 5π/3 and π (the bosons are
in the beginning of their ”fermionization” area for the CPN−1

model) and moving to make a pair with fermions. We see that
the chemical potential is moving them closer and closer until
they coincide on angle π/2 on the unit circle where Deven

function has its maximum value for the Gross-Neveu model
(D∞(π/2) = Cl∞(π/2) = sin(π/2) = 1). At order ∞ of
the model we have a bound of two fermions with total charge
2Qf , at π/2 and 3π/2. We must not forget that while in the
Hubbard model the fermions have the same charge, in the two
models of fermions and bosons the fermions and bosons have
charges connected by the relationship Qf = 2

d−1
2 Qb. This

picture could correspond to the creation of Cooper pairs of
conductivity.”

Spinoff: Generalized Bragg Law
Imagine a beam of particles with a wavelength similar

to the spacing between atoms in a crystal. When this
beam encounters a lattice plane within the crystal, it gets
scattered. The incident and reflected waves from the lattice
plane remain in phase if the difference in their path lengths
which determines the constructive interference, is given by the

formula: nλ = 2d sin θ, where θ is the scattering angle and d
is the interplanar distance.

Suppose now that a particle travels in a crystal lattice with
lattice spacing d, with momentum qi and collides with a lattice
point with an exchange of momentum q = qi − qf , where qf
is the the momentum of the reflected particle. Since a wave
has momentum q = ~k (k is the wave number) in reciprocal
space momentum transfer is given by Q = ki − kf (k is a
vectorial quantity). Then we are able to calculate a reciprocal
lattice vector G = Q with the relation to the lattice spacing as
G = 2π/d. Consequently the total transfer momentum from
N particles of a beam scattered by a crystal lattice is:

Qtotal = 4πNsinθ (40)

For a perturbed version of Bragg Law we may define a new
function ∆ where

∆(θ)→

(
sinθ +

∞∑
k=2

sinkθ

km

)
(41)

for arbitrary even m = 2, 4, ...,∞. This ∆ function is Clausen
function Clm(θ) (Figure 2). So the Bragg Law of diffraction
of a lattice with lattice space dmay have a generalized version:

nλ = 2d∆(θ)→ nλ = 2d

(
sinθ +

∞∑
k=2

sinkθ

km

)
. (42)

The ratio sinθ/∆(θ) for m → ∞ is 1, follows from the
observation that this limit is actually well defined

lim
m→∞

Clm(θ) = sin θ (43)

where m = 2n, n = 1, 2, 3, 4.....
The sum in the parenthesis is the Clausen function so:

nλ = 2dClm(θ) (44)
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The generalized transferred momentum is

Qgen = G (45)

where G is the reciprocal lattice vector with G = 2π/d. For
n = 1, λ = 1 and N beam particles we have:

Qgen = 4πNClm(θ) (46)

So, (36) may be equivalent to the calculation of the
overlap between two Bloch wavefunctions that differ by lattice
momentum Qgen when one is the incident and the other the
reflected wave from a lattice point.

Figure 2. The ratio sinθ/∆(θ) for θ ∈ [−2π, 2π]. As the index of Clausen function increases we take the well defined limit sinθ atm =∞.

4. Generalized Thermal Windows and Lattice Points

Figure 3. GN and CP thermal windows on regular hexagonal lattice. The red dots define the bosonic thermal window and the blue dots the fermionic thermal window.

Let’s see in detail Figure 3. Interestingly there is an
equivalent picture of the thermal windows in the Gross-
Neveu and CPN−1 models at finite T and imaginary chemical
potential. In the Gross-Neveu model and its change in the
statistics we have temperature (the chemical potential) that
”creates” the thermal windows, where inside them we have
a chiral symmetry breaking in order to make some fermion
condensates. Outside these windows we have Fermi statistics.
On the other hand the imaginary chemical potential ”creates”
the fermionization thermal windows for bosons where it is

always possible to tune the coupling to a special value, such
that the thermal mass vanishes. Outside these windows
we have Bose statistics. This picture is reminiscent to the
behaviour of the Gross-Neveu model where for a nonzero
temperature it was possible to tune the coupling in order to
restore parity. With the conjecture of the thermal windows we
have the equivalent picture of the region inside the hexagon.
Later, we will observe that the boundaries of the thermal
windows align with the positions of lattice points on the
hexagonal lattice. At these points, D2(−z∗) has its maximum
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value.
From [4] the generalized thermal windows are:

Table 2. Generalized Thermal Windows for theGN model.

Dimensions Closing T Opening T

3 3α∗
4π

3α∗
2π

5 13α∗
19π

13α∗
7π

7 51α∗
76π

51α∗
26π

9 205α∗
307π

205α∗
103π

11 819α∗
1228π

819α∗
410π

Let’s focus on the case of the 3d theory thermal window.
The borders for α∗ are 2πT/3 and 4πT/3. These are the points
where the D2(−z∗) takes its maximum value (imaginary part)
on the unit circle. On the unit circleD2(−z∗) = Cl2(π− α∗

T ).
The generalized thermal windows for the CPN−1 model are:

Table 3. Generalized Thermal Windows for the CPN−1 model.

Dimensions Closing T Opening T

3 3α∗
5π

3α∗
π

5 13α∗
20π

13α∗
6π

7 51α∗
77π

51α∗
25π

9 205α∗
308π

205α∗
102π

11 819α∗
1229π

819α∗
409π

Let’s focus again on the case of the 3d theory thermal
window. The borders for α∗ are πT/3 and 5πT/3. These
are the points where the D2(z∗) takes its maximum value
(imaginary part) on the unit circle. On the unit circle
D2(z∗) = Cl2(α∗

T ). The interesting aspect involves placing
all these points on the unit circle which is circumscribed
about a regular hexagon as we have explained before. So
the lattice points of the ”supersymmetric” model are lying
on the unit circle at α = 0, π/3, 2π/3, π, 4π/3, 5π/3. The
”supersymmetric” model when the regular hexagon turns to
square has a superconducting picture arising from the identities
of the a bosonic and fermionic models at imaginary chemical
potential (Figures 4, 5).

Figure 4. GN and CP thermal windows on irregular hexagonal lattice. The red dots define the bosonic thermal window and the blue dots the fermionic thermal window.

Figure 5. GN and CP thermal windows on square lattice. On lattice points A and C we have Cooper-pairs of fermions.
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5. Conclusion and Discussion
The main message of this work is that a fermionic and a

bosonic theory at imaginary chemical potential for arbitrary
odd dimensions, have a phase structure which is connected
to a hexagonal Hubbard model of fermions. Particularly,
the fermion-boson duality at imaginary chemical potential
enables us to relate the thermal windows of the fermionic
U(N) Gross-Neveu model and the bosonic CPN−1 model
at finite temperature to lattice transformations of hexagonal
Hubbard-like lattices to square lattice. Theoretical studies
have predicted that certain systems can undergo a transition
from a Hubbard hexagonal lattice to a square lattice. Since
our calculations have unveiled the relevance of the canonical
partition functions of the models to Bloch states, we think that
our results offer a new window into the utility of the Gross-

Neveu and CPN−1 models as a tool with which the creation
of a Cooper-pair can be studied. The overlap between two
Bloch wavefunctions that differ by lattice momentum Q may
be equivalent to the calculation of the total charge of a Cooper-
pair of fermions or the momentum transfer that one Bloch
wave gives to a lattice when reflected by a lattice point.
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Appendix

The Bloch-Wigner-Ramakrishnan functions Dm(z)
From the usual analytic continuation of the polylogarithms

Lim(z) =

∞∑
n=1

zn

nm
, z ∈ C \ [1,∞) , m = 1, 2, 3, .. . (47)

one can define the following Bloch-Wigner-Ramakrishnan functions [5, 6] as

Dm(z) = <

(
im+1

[
m∑
k=1

(− ln |z|)m−k

(m− k)!
Lik(z)− (− ln |z|)m

2m!

])
(48)

These are real functions of complex variable, analytic in C\{0, 1}. In the text we utilized the following properties ofDm(z)’s.

Dm(1/z) = (−1)m−1Dm(z) (49)

∂

∂z
Dm(z) =

i

2z

(
Dm−1(z) +

i

2

(−i ln |z|)m−1

(m− 1)!

1 + z

1− z

)
(50)

On the unit circle we have

D2n−1(e−iθ) = (−1)n<[Li2n−1(e−iθ)] = (−1)nCl2n−1(θ) , (51)

D2n(e−iθ) = (−1)n+1=[Li2n(e−iθ)] = (−1)nCl2n(θ) (52)

for n = 1, 2, 3, ... The Clausen functions Clm(θ) are defined as

Cl2n−1(θ) ≡
∞∑
k=1

cos kθ

k2n−1
, Cl2n(θ) ≡

∞∑
k=1

sin kθ

k2n
, n = 1, 2, .. (53)
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